Some aspects of calculus on non-smooth sets

نویسنده

  • Stephen Semmes
چکیده

Let E be a closed set in R, and suppose that there is a k ≥ 1 such that every x, y ∈ E can be connected by a rectifiable path in E with length ≤ k |x−y|. This condition is satisfied by chord-arc curves, Lipschitz manifolds of any dimension, and fractals like Sierpinski gaskets and carpets. Note that length-minimizing paths in E are chord-arc curves with constant k. A basic feature of this condition is that one can integrate local Lipschitz conditions on E to get global conditions. For instance, if f : E → R is locally Lipschitz of order 1 with constant C ≥ 0, then f is globally Lipschitz on E with constant k C. Let A(x) be a continuous function on E with values in linear mappings from R to R. Equivalently, one can use the standard inner product on R to represent A(x) by a continuous mapping from E into R. Also let f be a locally Lipschitz real-valued function on E. Suppose that A includes the directional derivatives of f almost everywhere on any rectifiable curve in E, in the sense that the derivative of f(p(t)) is equal to A(p(t)) applied to the derivative of p(t) for almost every t when p(t) is a locally Lipschitz function on an interval I in the real line with values in E. In particular, this holds when f is continuously differentiable on E in the sense of the Whitney extension theorem with differential at x ∈ E given by A(x). In this case,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Newtonian Fuzzy numbers and related applications

Although there are many excellent ways presenting the principle of the classical calculus, the novel presentations probably leads most naturally to the development of the non-Newtonian calculus. The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Since this self-contained work is intended for a wide audience, inc...

متن کامل

Analytical aspects of the interval unilateral quadratic matrix equations and their united solution sets

This paper introduces the emph{interval unilateral quadratic matrix equation}, $IUQe$ and attempts to find various analytical results on its AE-solution sets in which $A,B$ and $CCC$ are known real interval matrices, while $X$ is an unknown matrix. These results are derived from a generalization of some results of Shary. We also give sufficient conditions for non-emptiness of some quasi-solutio...

متن کامل

NON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS

A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...

متن کامل

$r$-fuzzy regular semi open sets in smooth topological spaces

In this paper, we introduce and study the concept of $r$-fuzzy regular semi open (closed) sets in smooth topological spaces. By using $r$-fuzzy regular semi open (closed) sets, we define a new fuzzy closure operator namely $r$-fuzzy regular semi interior (closure) operator. Also, we introduce fuzzy regular semi continuous and fuzzy regular semi irresolute mappings. Moreover, we investigate the ...

متن کامل

Some Conditions for Characterizing Minimum Face in Non-Radial DEA Models with Undesirable Outputs

The problem of utilizing undesirable (bad) outputs in DEA models often need replacing the assumption of free disposability of outputs by weak disposability of outputs. The Kuosmanen technology is the only correct representation of the fully convex technology exhibiting weak disposability of bad and good outputs. Also, there are some specific features of non-radial data envelopment analysis (DEA...

متن کامل

Some Integral Inequalities of Hermite-Hadamard Type for Multiplicatively s-Preinvex Functions

In this paper, we establish integral inequalities of Hermite-Hadamard type for multiplicativelys-preinvex functions. We also obtain some new inequalities involving multiplicative integralsby using some properties of multiplicatively s-preinvex and preinvex functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007